Metamath Proof Explorer


Theorem dfpre2

Description: Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion dfpre2 ( 𝑁𝑉 → pre 𝑁 = ( ℩ 𝑚 𝑚 SucMap 𝑁 ) )

Proof

Step Hyp Ref Expression
1 dfpre pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) )
2 elpredg ( ( 𝑁𝑉𝑚 ∈ V ) → ( 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ↔ 𝑚 SucMap 𝑁 ) )
3 2 elvd ( 𝑁𝑉 → ( 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ↔ 𝑚 SucMap 𝑁 ) )
4 3 iotabidv ( 𝑁𝑉 → ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ) = ( ℩ 𝑚 𝑚 SucMap 𝑁 ) )
5 1 4 eqtrid ( 𝑁𝑉 → pre 𝑁 = ( ℩ 𝑚 𝑚 SucMap 𝑁 ) )