Description: Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpre2 | ⊢ ( 𝑁 ∈ 𝑉 → pre 𝑁 = ( ℩ 𝑚 𝑚 SucMap 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpre | ⊢ pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ) | |
| 2 | elpredg | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑚 ∈ V ) → ( 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ↔ 𝑚 SucMap 𝑁 ) ) | |
| 3 | 2 | elvd | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ↔ 𝑚 SucMap 𝑁 ) ) |
| 4 | 3 | iotabidv | ⊢ ( 𝑁 ∈ 𝑉 → ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , V , 𝑁 ) ) = ( ℩ 𝑚 𝑚 SucMap 𝑁 ) ) |
| 5 | 1 4 | eqtrid | ⊢ ( 𝑁 ∈ 𝑉 → pre 𝑁 = ( ℩ 𝑚 𝑚 SucMap 𝑁 ) ) |