Metamath Proof Explorer


Theorem dfpre3

Description: Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion dfpre3 ( 𝑁𝑉 → pre 𝑁 = ( ℩ 𝑚 suc 𝑚 = 𝑁 ) )

Proof

Step Hyp Ref Expression
1 dfpre2 ( 𝑁𝑉 → pre 𝑁 = ( ℩ 𝑚 𝑚 SucMap 𝑁 ) )
2 brsucmap ( ( 𝑚 ∈ V ∧ 𝑁𝑉 ) → ( 𝑚 SucMap 𝑁 ↔ suc 𝑚 = 𝑁 ) )
3 2 el2v1 ( 𝑁𝑉 → ( 𝑚 SucMap 𝑁 ↔ suc 𝑚 = 𝑁 ) )
4 3 iotabidv ( 𝑁𝑉 → ( ℩ 𝑚 𝑚 SucMap 𝑁 ) = ( ℩ 𝑚 suc 𝑚 = 𝑁 ) )
5 1 4 eqtrd ( 𝑁𝑉 → pre 𝑁 = ( ℩ 𝑚 suc 𝑚 = 𝑁 ) )