Metamath Proof Explorer


Theorem dfpre3

Description: Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion dfpre3
|- ( N e. V -> pre N = ( iota m suc m = N ) )

Proof

Step Hyp Ref Expression
1 dfpre2
 |-  ( N e. V -> pre N = ( iota m m SucMap N ) )
2 brsucmap
 |-  ( ( m e. _V /\ N e. V ) -> ( m SucMap N <-> suc m = N ) )
3 2 el2v1
 |-  ( N e. V -> ( m SucMap N <-> suc m = N ) )
4 3 iotabidv
 |-  ( N e. V -> ( iota m m SucMap N ) = ( iota m suc m = N ) )
5 1 4 eqtrd
 |-  ( N e. V -> pre N = ( iota m suc m = N ) )