Description: Alternate definition of the successor-predecessor. (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpre3 | |- ( N e. V -> pre N = ( iota m suc m = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpre2 | |- ( N e. V -> pre N = ( iota m m SucMap N ) ) |
|
| 2 | brsucmap | |- ( ( m e. _V /\ N e. V ) -> ( m SucMap N <-> suc m = N ) ) |
|
| 3 | 2 | el2v1 | |- ( N e. V -> ( m SucMap N <-> suc m = N ) ) |
| 4 | 3 | iotabidv | |- ( N e. V -> ( iota m m SucMap N ) = ( iota m suc m = N ) ) |
| 5 | 1 4 | eqtrd | |- ( N e. V -> pre N = ( iota m suc m = N ) ) |