Description: Alternate definition of the predecessor class when N is a set. (Contributed by Peter Mazsa, 26-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpred4 | |- ( N e. V -> Pred ( R , A , N ) = [ N ] `' ( R |` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpred3g | |- ( N e. V -> Pred ( R , A , N ) = { m e. A | m R N } ) |
|
| 2 | ec1cnvres | |- ( N e. V -> [ N ] `' ( R |` A ) = { m e. A | m R N } ) |
|
| 3 | 1 2 | eqtr4d | |- ( N e. V -> Pred ( R , A , N ) = [ N ] `' ( R |` A ) ) |