| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-pre |
|- pre N = ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) |
| 2 |
|
dfpred4 |
|- ( N e. V -> Pred ( SucMap , dom SucMap , N ) = [ N ] `' ( SucMap |` dom SucMap ) ) |
| 3 |
|
relsucmap |
|- Rel SucMap |
| 4 |
|
dfrel5 |
|- ( Rel SucMap <-> ( SucMap |` dom SucMap ) = SucMap ) |
| 5 |
3 4
|
mpbi |
|- ( SucMap |` dom SucMap ) = SucMap |
| 6 |
5
|
cnveqi |
|- `' ( SucMap |` dom SucMap ) = `' SucMap |
| 7 |
6
|
eceq2i |
|- [ N ] `' ( SucMap |` dom SucMap ) = [ N ] `' SucMap |
| 8 |
2 7
|
eqtrdi |
|- ( N e. V -> Pred ( SucMap , dom SucMap , N ) = [ N ] `' SucMap ) |
| 9 |
8
|
eleq2d |
|- ( N e. V -> ( m e. Pred ( SucMap , dom SucMap , N ) <-> m e. [ N ] `' SucMap ) ) |
| 10 |
9
|
iotabidv |
|- ( N e. V -> ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) = ( iota m m e. [ N ] `' SucMap ) ) |
| 11 |
1 10
|
eqtrid |
|- ( N e. V -> pre N = ( iota m m e. [ N ] `' SucMap ) ) |