| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-pre |
⊢ pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ) |
| 2 |
|
dfpred4 |
⊢ ( 𝑁 ∈ 𝑉 → Pred ( SucMap , dom SucMap , 𝑁 ) = [ 𝑁 ] ◡ ( SucMap ↾ dom SucMap ) ) |
| 3 |
|
relsucmap |
⊢ Rel SucMap |
| 4 |
|
dfrel5 |
⊢ ( Rel SucMap ↔ ( SucMap ↾ dom SucMap ) = SucMap ) |
| 5 |
3 4
|
mpbi |
⊢ ( SucMap ↾ dom SucMap ) = SucMap |
| 6 |
5
|
cnveqi |
⊢ ◡ ( SucMap ↾ dom SucMap ) = ◡ SucMap |
| 7 |
6
|
eceq2i |
⊢ [ 𝑁 ] ◡ ( SucMap ↾ dom SucMap ) = [ 𝑁 ] ◡ SucMap |
| 8 |
2 7
|
eqtrdi |
⊢ ( 𝑁 ∈ 𝑉 → Pred ( SucMap , dom SucMap , 𝑁 ) = [ 𝑁 ] ◡ SucMap ) |
| 9 |
8
|
eleq2d |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ↔ 𝑚 ∈ [ 𝑁 ] ◡ SucMap ) ) |
| 10 |
9
|
iotabidv |
⊢ ( 𝑁 ∈ 𝑉 → ( ℩ 𝑚 𝑚 ∈ Pred ( SucMap , dom SucMap , 𝑁 ) ) = ( ℩ 𝑚 𝑚 ∈ [ 𝑁 ] ◡ SucMap ) ) |
| 11 |
1 10
|
eqtrid |
⊢ ( 𝑁 ∈ 𝑉 → pre 𝑁 = ( ℩ 𝑚 𝑚 ∈ [ 𝑁 ] ◡ SucMap ) ) |