Description: Converse restricted coset of B . (Contributed by Peter Mazsa, 22-Mar-2019) (Revised by Peter Mazsa, 21-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ec1cnvres | |- ( B e. V -> [ B ] `' ( R |` A ) = { x e. A | x R B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elec1cnvres | |- ( B e. V -> ( x e. [ B ] `' ( R |` A ) <-> ( x e. A /\ x R B ) ) ) |
|
| 2 | 1 | eqabdv | |- ( B e. V -> [ B ] `' ( R |` A ) = { x | ( x e. A /\ x R B ) } ) |
| 3 | df-rab | |- { x e. A | x R B } = { x | ( x e. A /\ x R B ) } |
|
| 4 | 2 3 | eqtr4di | |- ( B e. V -> [ B ] `' ( R |` A ) = { x e. A | x R B } ) |