Metamath Proof Explorer


Theorem elec1cnvres

Description: Elementhood in the converse restricted coset of B . (Contributed by Peter Mazsa, 21-Sep-2018)

Ref Expression
Assertion elec1cnvres
|- ( B e. V -> ( C e. [ B ] `' ( R |` A ) <-> ( C e. A /\ C R B ) ) )

Proof

Step Hyp Ref Expression
1 relcnv
 |-  Rel `' ( R |` A )
2 relelec
 |-  ( Rel `' ( R |` A ) -> ( C e. [ B ] `' ( R |` A ) <-> B `' ( R |` A ) C ) )
3 1 2 ax-mp
 |-  ( C e. [ B ] `' ( R |` A ) <-> B `' ( R |` A ) C )
4 br1cnvres
 |-  ( B e. V -> ( B `' ( R |` A ) C <-> ( C e. A /\ C R B ) ) )
5 3 4 bitrid
 |-  ( B e. V -> ( C e. [ B ] `' ( R |` A ) <-> ( C e. A /\ C R B ) ) )