| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-res |
|- ( R |` A ) = ( R i^i ( A X. _V ) ) |
| 2 |
1
|
cnveqi |
|- `' ( R |` A ) = `' ( R i^i ( A X. _V ) ) |
| 3 |
2
|
breqi |
|- ( B `' ( R |` A ) C <-> B `' ( R i^i ( A X. _V ) ) C ) |
| 4 |
|
elex |
|- ( B e. V -> B e. _V ) |
| 5 |
|
br1cnvinxp |
|- ( B `' ( R i^i ( A X. _V ) ) C <-> ( ( B e. _V /\ C e. A ) /\ C R B ) ) |
| 6 |
|
anass |
|- ( ( ( B e. _V /\ C e. A ) /\ C R B ) <-> ( B e. _V /\ ( C e. A /\ C R B ) ) ) |
| 7 |
5 6
|
bitri |
|- ( B `' ( R i^i ( A X. _V ) ) C <-> ( B e. _V /\ ( C e. A /\ C R B ) ) ) |
| 8 |
7
|
baib |
|- ( B e. _V -> ( B `' ( R i^i ( A X. _V ) ) C <-> ( C e. A /\ C R B ) ) ) |
| 9 |
4 8
|
syl |
|- ( B e. V -> ( B `' ( R i^i ( A X. _V ) ) C <-> ( C e. A /\ C R B ) ) ) |
| 10 |
3 9
|
bitrid |
|- ( B e. V -> ( B `' ( R |` A ) C <-> ( C e. A /\ C R B ) ) ) |