Metamath Proof Explorer


Theorem br1cnvinxp

Description: Binary relation on the converse of an intersection with a Cartesian product. (Contributed by Peter Mazsa, 27-Jul-2019)

Ref Expression
Assertion br1cnvinxp
|- ( C `' ( R i^i ( A X. B ) ) D <-> ( ( C e. B /\ D e. A ) /\ D R C ) )

Proof

Step Hyp Ref Expression
1 relinxp
 |-  Rel ( R i^i ( A X. B ) )
2 1 relbrcnv
 |-  ( C `' ( R i^i ( A X. B ) ) D <-> D ( R i^i ( A X. B ) ) C )
3 brinxp2
 |-  ( D ( R i^i ( A X. B ) ) C <-> ( ( D e. A /\ C e. B ) /\ D R C ) )
4 ancom
 |-  ( ( D e. A /\ C e. B ) <-> ( C e. B /\ D e. A ) )
5 4 anbi1i
 |-  ( ( ( D e. A /\ C e. B ) /\ D R C ) <-> ( ( C e. B /\ D e. A ) /\ D R C ) )
6 2 3 5 3bitri
 |-  ( C `' ( R i^i ( A X. B ) ) D <-> ( ( C e. B /\ D e. A ) /\ D R C ) )