Description: Binary relation on the converse of an intersection with a Cartesian product. (Contributed by Peter Mazsa, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cnvinxp | |- ( C `' ( R i^i ( A X. B ) ) D <-> ( ( C e. B /\ D e. A ) /\ D R C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp | |- Rel ( R i^i ( A X. B ) ) |
|
| 2 | 1 | relbrcnv | |- ( C `' ( R i^i ( A X. B ) ) D <-> D ( R i^i ( A X. B ) ) C ) |
| 3 | brinxp2 | |- ( D ( R i^i ( A X. B ) ) C <-> ( ( D e. A /\ C e. B ) /\ D R C ) ) |
|
| 4 | ancom | |- ( ( D e. A /\ C e. B ) <-> ( C e. B /\ D e. A ) ) |
|
| 5 | 4 | anbi1i | |- ( ( ( D e. A /\ C e. B ) /\ D R C ) <-> ( ( C e. B /\ D e. A ) /\ D R C ) ) |
| 6 | 2 3 5 | 3bitri | |- ( C `' ( R i^i ( A X. B ) ) D <-> ( ( C e. B /\ D e. A ) /\ D R C ) ) |