Description: Elementhood in a converse R -coset when R is a relation. (Contributed by Peter Mazsa, 9-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releleccnv | |- ( Rel R -> ( A e. [ B ] `' R <-> A R B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' R |
|
| 2 | relelec | |- ( Rel `' R -> ( A e. [ B ] `' R <-> B `' R A ) ) |
|
| 3 | 1 2 | ax-mp | |- ( A e. [ B ] `' R <-> B `' R A ) |
| 4 | relbrcnvg | |- ( Rel R -> ( B `' R A <-> A R B ) ) |
|
| 5 | 3 4 | bitrid | |- ( Rel R -> ( A e. [ B ] `' R <-> A R B ) ) |