Step |
Hyp |
Ref |
Expression |
1 |
|
dfcleq |
|- ( [ A ] `' R = [ B ] `' S <-> A. x ( x e. [ A ] `' R <-> x e. [ B ] `' S ) ) |
2 |
|
releleccnv |
|- ( Rel R -> ( x e. [ A ] `' R <-> x R A ) ) |
3 |
|
releleccnv |
|- ( Rel S -> ( x e. [ B ] `' S <-> x S B ) ) |
4 |
2 3
|
bi2bian9 |
|- ( ( Rel R /\ Rel S ) -> ( ( x e. [ A ] `' R <-> x e. [ B ] `' S ) <-> ( x R A <-> x S B ) ) ) |
5 |
4
|
albidv |
|- ( ( Rel R /\ Rel S ) -> ( A. x ( x e. [ A ] `' R <-> x e. [ B ] `' S ) <-> A. x ( x R A <-> x S B ) ) ) |
6 |
1 5
|
syl5bb |
|- ( ( Rel R /\ Rel S ) -> ( [ A ] `' R = [ B ] `' S <-> A. x ( x R A <-> x S B ) ) ) |