Metamath Proof Explorer


Theorem releccnveq

Description: Equality of converse R -coset and converse S -coset when R and S are relations. (Contributed by Peter Mazsa, 27-Jul-2019)

Ref Expression
Assertion releccnveq Rel R Rel S A R -1 = B S -1 x x R A x S B

Proof

Step Hyp Ref Expression
1 dfcleq A R -1 = B S -1 x x A R -1 x B S -1
2 releleccnv Rel R x A R -1 x R A
3 releleccnv Rel S x B S -1 x S B
4 2 3 bi2bian9 Rel R Rel S x A R -1 x B S -1 x R A x S B
5 4 albidv Rel R Rel S x x A R -1 x B S -1 x x R A x S B
6 1 5 syl5bb Rel R Rel S A R -1 = B S -1 x x R A x S B