Metamath Proof Explorer


Theorem releccnveq

Description: Equality of converse R -coset and converse S -coset when R and S are relations. (Contributed by Peter Mazsa, 27-Jul-2019)

Ref Expression
Assertion releccnveq RelRRelSAR-1=BS-1xxRAxSB

Proof

Step Hyp Ref Expression
1 dfcleq AR-1=BS-1xxAR-1xBS-1
2 releleccnv RelRxAR-1xRA
3 releleccnv RelSxBS-1xSB
4 2 3 bi2bian9 RelRRelSxAR-1xBS-1xRAxSB
5 4 albidv RelRRelSxxAR-1xBS-1xxRAxSB
6 1 5 bitrid RelRRelSAR-1=BS-1xxRAxSB