Metamath Proof Explorer


Theorem releleccnv

Description: Elementhood in a converse R -coset when R is a relation. (Contributed by Peter Mazsa, 9-Dec-2018)

Ref Expression
Assertion releleccnv RelRABR-1ARB

Proof

Step Hyp Ref Expression
1 relcnv RelR-1
2 relelec RelR-1ABR-1BR-1A
3 1 2 ax-mp ABR-1BR-1A
4 relbrcnvg RelRBR-1AARB
5 3 4 bitrid RelRABR-1ARB