Description: Elementhood in a converse R -coset when R is a relation. (Contributed by Peter Mazsa, 9-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releleccnv | ⊢ ( Rel 𝑅 → ( 𝐴 ∈ [ 𝐵 ] ◡ 𝑅 ↔ 𝐴 𝑅 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ⊢ Rel ◡ 𝑅 | |
| 2 | relelec | ⊢ ( Rel ◡ 𝑅 → ( 𝐴 ∈ [ 𝐵 ] ◡ 𝑅 ↔ 𝐵 ◡ 𝑅 𝐴 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝐴 ∈ [ 𝐵 ] ◡ 𝑅 ↔ 𝐵 ◡ 𝑅 𝐴 ) |
| 4 | relbrcnvg | ⊢ ( Rel 𝑅 → ( 𝐵 ◡ 𝑅 𝐴 ↔ 𝐴 𝑅 𝐵 ) ) | |
| 5 | 3 4 | bitrid | ⊢ ( Rel 𝑅 → ( 𝐴 ∈ [ 𝐵 ] ◡ 𝑅 ↔ 𝐴 𝑅 𝐵 ) ) |