Metamath Proof Explorer


Theorem opelvvdif

Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019)

Ref Expression
Assertion opelvvdif A V B W A B V × V R ¬ A B R

Proof

Step Hyp Ref Expression
1 eldif A B V × V R A B V × V ¬ A B R
2 opelvvg A V B W A B V × V
3 2 biantrurd A V B W ¬ A B R A B V × V ¬ A B R
4 1 3 bitr4id A V B W A B V × V R ¬ A B R