Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
opelvvdif
Next ⟩
vvdifopab
Metamath Proof Explorer
Ascii
Unicode
Theorem
opelvvdif
Description:
Negated elementhood of ordered pair.
(Contributed by
Peter Mazsa
, 14-Jan-2019)
Ref
Expression
Assertion
opelvvdif
⊢
A
∈
V
∧
B
∈
W
→
A
B
∈
V
×
V
∖
R
↔
¬
A
B
∈
R
Proof
Step
Hyp
Ref
Expression
1
eldif
⊢
A
B
∈
V
×
V
∖
R
↔
A
B
∈
V
×
V
∧
¬
A
B
∈
R
2
opelvvg
⊢
A
∈
V
∧
B
∈
W
→
A
B
∈
V
×
V
3
2
biantrurd
⊢
A
∈
V
∧
B
∈
W
→
¬
A
B
∈
R
↔
A
B
∈
V
×
V
∧
¬
A
B
∈
R
4
1
3
bitr4id
⊢
A
∈
V
∧
B
∈
W
→
A
B
∈
V
×
V
∖
R
↔
¬
A
B
∈
R