Metamath Proof Explorer


Theorem opelvvdif

Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019)

Ref Expression
Assertion opelvvdif ( ( 𝐴𝑉𝐵𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( V × V ) ∖ 𝑅 ) ↔ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 eldif ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( V × V ) ∖ 𝑅 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) ∧ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ) )
2 opelvvg ( ( 𝐴𝑉𝐵𝑊 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) )
3 2 biantrurd ( ( 𝐴𝑉𝐵𝑊 ) → ( ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) ∧ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ) ) )
4 1 3 bitr4id ( ( 𝐴𝑉𝐵𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( V × V ) ∖ 𝑅 ) ↔ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ) )