Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelvvdif | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. ( ( _V X. _V ) \ R ) <-> -. <. A , B >. e. R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( <. A , B >. e. ( ( _V X. _V ) \ R ) <-> ( <. A , B >. e. ( _V X. _V ) /\ -. <. A , B >. e. R ) ) |
|
| 2 | opelvvg | |- ( ( A e. V /\ B e. W ) -> <. A , B >. e. ( _V X. _V ) ) |
|
| 3 | 2 | biantrurd | |- ( ( A e. V /\ B e. W ) -> ( -. <. A , B >. e. R <-> ( <. A , B >. e. ( _V X. _V ) /\ -. <. A , B >. e. R ) ) ) |
| 4 | 1 3 | bitr4id | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. ( ( _V X. _V ) \ R ) <-> -. <. A , B >. e. R ) ) |