Metamath Proof Explorer


Theorem opelvvdif

Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019)

Ref Expression
Assertion opelvvdif
|- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. ( ( _V X. _V ) \ R ) <-> -. <. A , B >. e. R ) )

Proof

Step Hyp Ref Expression
1 eldif
 |-  ( <. A , B >. e. ( ( _V X. _V ) \ R ) <-> ( <. A , B >. e. ( _V X. _V ) /\ -. <. A , B >. e. R ) )
2 opelvvg
 |-  ( ( A e. V /\ B e. W ) -> <. A , B >. e. ( _V X. _V ) )
3 2 biantrurd
 |-  ( ( A e. V /\ B e. W ) -> ( -. <. A , B >. e. R <-> ( <. A , B >. e. ( _V X. _V ) /\ -. <. A , B >. e. R ) ) )
4 1 3 bitr4id
 |-  ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. ( ( _V X. _V ) \ R ) <-> -. <. A , B >. e. R ) )