Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | opelvvdif | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. ( ( _V X. _V ) \ R ) <-> -. <. A , B >. e. R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | |- ( <. A , B >. e. ( ( _V X. _V ) \ R ) <-> ( <. A , B >. e. ( _V X. _V ) /\ -. <. A , B >. e. R ) ) |
|
2 | opelvvg | |- ( ( A e. V /\ B e. W ) -> <. A , B >. e. ( _V X. _V ) ) |
|
3 | 2 | biantrurd | |- ( ( A e. V /\ B e. W ) -> ( -. <. A , B >. e. R <-> ( <. A , B >. e. ( _V X. _V ) /\ -. <. A , B >. e. R ) ) ) |
4 | 1 3 | bitr4id | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. ( ( _V X. _V ) \ R ) <-> -. <. A , B >. e. R ) ) |