Description: Binary relation on the converse of an intersection with a Cartesian product. (Contributed by Peter Mazsa, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cnvinxp | ⊢ ( 𝐶 ◡ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐷 ↔ ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 𝑅 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp | ⊢ Rel ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) | |
| 2 | 1 | relbrcnv | ⊢ ( 𝐶 ◡ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐷 ↔ 𝐷 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐶 ) |
| 3 | brinxp2 | ⊢ ( 𝐷 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐶 ↔ ( ( 𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝐷 𝑅 𝐶 ) ) | |
| 4 | ancom | ⊢ ( ( 𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ↔ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) ) | |
| 5 | 4 | anbi1i | ⊢ ( ( ( 𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝐷 𝑅 𝐶 ) ↔ ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 𝑅 𝐶 ) ) |
| 6 | 2 3 5 | 3bitri | ⊢ ( 𝐶 ◡ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐷 ↔ ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 𝑅 𝐶 ) ) |