Description: Elementhood in the converse restricted coset of B . (Contributed by Peter Mazsa, 21-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elec1cnvres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐶 ∈ [ 𝐵 ] ◡ ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ⊢ Rel ◡ ( 𝑅 ↾ 𝐴 ) | |
| 2 | relelec | ⊢ ( Rel ◡ ( 𝑅 ↾ 𝐴 ) → ( 𝐶 ∈ [ 𝐵 ] ◡ ( 𝑅 ↾ 𝐴 ) ↔ 𝐵 ◡ ( 𝑅 ↾ 𝐴 ) 𝐶 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝐶 ∈ [ 𝐵 ] ◡ ( 𝑅 ↾ 𝐴 ) ↔ 𝐵 ◡ ( 𝑅 ↾ 𝐴 ) 𝐶 ) |
| 4 | br1cnvres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ◡ ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 𝐵 ) ) ) | |
| 5 | 3 4 | bitrid | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐶 ∈ [ 𝐵 ] ◡ ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 𝐵 ) ) ) |