Metamath Proof Explorer


Theorem elec1cnvres

Description: Elementhood in the converse restricted coset of B . (Contributed by Peter Mazsa, 21-Sep-2018)

Ref Expression
Assertion elec1cnvres ( 𝐵𝑉 → ( 𝐶 ∈ [ 𝐵 ] ( 𝑅𝐴 ) ↔ ( 𝐶𝐴𝐶 𝑅 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 relcnv Rel ( 𝑅𝐴 )
2 relelec ( Rel ( 𝑅𝐴 ) → ( 𝐶 ∈ [ 𝐵 ] ( 𝑅𝐴 ) ↔ 𝐵 ( 𝑅𝐴 ) 𝐶 ) )
3 1 2 ax-mp ( 𝐶 ∈ [ 𝐵 ] ( 𝑅𝐴 ) ↔ 𝐵 ( 𝑅𝐴 ) 𝐶 )
4 br1cnvres ( 𝐵𝑉 → ( 𝐵 ( 𝑅𝐴 ) 𝐶 ↔ ( 𝐶𝐴𝐶 𝑅 𝐵 ) ) )
5 3 4 bitrid ( 𝐵𝑉 → ( 𝐶 ∈ [ 𝐵 ] ( 𝑅𝐴 ) ↔ ( 𝐶𝐴𝐶 𝑅 𝐵 ) ) )