Description: Converse restricted coset of B . (Contributed by Peter Mazsa, 22-Mar-2019) (Revised by Peter Mazsa, 21-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ec1cnvres | ⊢ ( 𝐵 ∈ 𝑉 → [ 𝐵 ] ◡ ( 𝑅 ↾ 𝐴 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elec1cnvres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ∈ [ 𝐵 ] ◡ ( 𝑅 ↾ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) ) ) | |
| 2 | 1 | eqabdv | ⊢ ( 𝐵 ∈ 𝑉 → [ 𝐵 ] ◡ ( 𝑅 ↾ 𝐴 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) } ) |
| 3 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝐵 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) } | |
| 4 | 2 3 | eqtr4di | ⊢ ( 𝐵 ∈ 𝑉 → [ 𝐵 ] ◡ ( 𝑅 ↾ 𝐴 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝐵 } ) |