Metamath Proof Explorer


Theorem ec1cnvres

Description: Converse restricted coset of B . (Contributed by Peter Mazsa, 22-Mar-2019) (Revised by Peter Mazsa, 21-Oct-2021)

Ref Expression
Assertion ec1cnvres ( 𝐵𝑉 → [ 𝐵 ] ( 𝑅𝐴 ) = { 𝑥𝐴𝑥 𝑅 𝐵 } )

Proof

Step Hyp Ref Expression
1 elec1cnvres ( 𝐵𝑉 → ( 𝑥 ∈ [ 𝐵 ] ( 𝑅𝐴 ) ↔ ( 𝑥𝐴𝑥 𝑅 𝐵 ) ) )
2 1 eqabdv ( 𝐵𝑉 → [ 𝐵 ] ( 𝑅𝐴 ) = { 𝑥 ∣ ( 𝑥𝐴𝑥 𝑅 𝐵 ) } )
3 df-rab { 𝑥𝐴𝑥 𝑅 𝐵 } = { 𝑥 ∣ ( 𝑥𝐴𝑥 𝑅 𝐵 ) }
4 2 3 eqtr4di ( 𝐵𝑉 → [ 𝐵 ] ( 𝑅𝐴 ) = { 𝑥𝐴𝑥 𝑅 𝐵 } )