| Step |
Hyp |
Ref |
Expression |
| 1 |
|
presucmap |
|- ( N e. ran SucMap -> pre N SucMap N ) |
| 2 |
|
preex |
|- pre N e. _V |
| 3 |
|
sucmapleftuniq |
|- ( ( pre N e. _V /\ m e. _V /\ N e. ran SucMap ) -> ( ( pre N SucMap N /\ m SucMap N ) -> pre N = m ) ) |
| 4 |
2 3
|
mp3an1 |
|- ( ( m e. _V /\ N e. ran SucMap ) -> ( ( pre N SucMap N /\ m SucMap N ) -> pre N = m ) ) |
| 5 |
4
|
el2v1 |
|- ( N e. ran SucMap -> ( ( pre N SucMap N /\ m SucMap N ) -> pre N = m ) ) |
| 6 |
1 5
|
mpand |
|- ( N e. ran SucMap -> ( m SucMap N -> pre N = m ) ) |
| 7 |
|
eqcom |
|- ( pre N = m <-> m = pre N ) |
| 8 |
6 7
|
imbitrdi |
|- ( N e. ran SucMap -> ( m SucMap N -> m = pre N ) ) |
| 9 |
8
|
alrimiv |
|- ( N e. ran SucMap -> A. m ( m SucMap N -> m = pre N ) ) |