| Step |
Hyp |
Ref |
Expression |
| 1 |
|
presucmap |
⊢ ( 𝑁 ∈ ran SucMap → pre 𝑁 SucMap 𝑁 ) |
| 2 |
|
preex |
⊢ pre 𝑁 ∈ V |
| 3 |
|
sucmapleftuniq |
⊢ ( ( pre 𝑁 ∈ V ∧ 𝑚 ∈ V ∧ 𝑁 ∈ ran SucMap ) → ( ( pre 𝑁 SucMap 𝑁 ∧ 𝑚 SucMap 𝑁 ) → pre 𝑁 = 𝑚 ) ) |
| 4 |
2 3
|
mp3an1 |
⊢ ( ( 𝑚 ∈ V ∧ 𝑁 ∈ ran SucMap ) → ( ( pre 𝑁 SucMap 𝑁 ∧ 𝑚 SucMap 𝑁 ) → pre 𝑁 = 𝑚 ) ) |
| 5 |
4
|
el2v1 |
⊢ ( 𝑁 ∈ ran SucMap → ( ( pre 𝑁 SucMap 𝑁 ∧ 𝑚 SucMap 𝑁 ) → pre 𝑁 = 𝑚 ) ) |
| 6 |
1 5
|
mpand |
⊢ ( 𝑁 ∈ ran SucMap → ( 𝑚 SucMap 𝑁 → pre 𝑁 = 𝑚 ) ) |
| 7 |
|
eqcom |
⊢ ( pre 𝑁 = 𝑚 ↔ 𝑚 = pre 𝑁 ) |
| 8 |
6 7
|
imbitrdi |
⊢ ( 𝑁 ∈ ran SucMap → ( 𝑚 SucMap 𝑁 → 𝑚 = pre 𝑁 ) ) |
| 9 |
8
|
alrimiv |
⊢ ( 𝑁 ∈ ran SucMap → ∀ 𝑚 ( 𝑚 SucMap 𝑁 → 𝑚 = pre 𝑁 ) ) |