Metamath Proof Explorer


Theorem preuniqval

Description: Uniqueness/canonicity of pre . presucmap gives one witness; this theorem gives it is the only one. It turns any predecessor proof into an equality with pre N . (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion preuniqval ( 𝑁 ∈ ran SucMap → ∀ 𝑚 ( 𝑚 SucMap 𝑁𝑚 = pre 𝑁 ) )

Proof

Step Hyp Ref Expression
1 presucmap ( 𝑁 ∈ ran SucMap → pre 𝑁 SucMap 𝑁 )
2 preex pre 𝑁 ∈ V
3 sucmapleftuniq ( ( pre 𝑁 ∈ V ∧ 𝑚 ∈ V ∧ 𝑁 ∈ ran SucMap ) → ( ( pre 𝑁 SucMap 𝑁𝑚 SucMap 𝑁 ) → pre 𝑁 = 𝑚 ) )
4 2 3 mp3an1 ( ( 𝑚 ∈ V ∧ 𝑁 ∈ ran SucMap ) → ( ( pre 𝑁 SucMap 𝑁𝑚 SucMap 𝑁 ) → pre 𝑁 = 𝑚 ) )
5 4 el2v1 ( 𝑁 ∈ ran SucMap → ( ( pre 𝑁 SucMap 𝑁𝑚 SucMap 𝑁 ) → pre 𝑁 = 𝑚 ) )
6 1 5 mpand ( 𝑁 ∈ ran SucMap → ( 𝑚 SucMap 𝑁 → pre 𝑁 = 𝑚 ) )
7 eqcom ( pre 𝑁 = 𝑚𝑚 = pre 𝑁 )
8 6 7 imbitrdi ( 𝑁 ∈ ran SucMap → ( 𝑚 SucMap 𝑁𝑚 = pre 𝑁 ) )
9 8 alrimiv ( 𝑁 ∈ ran SucMap → ∀ 𝑚 ( 𝑚 SucMap 𝑁𝑚 = pre 𝑁 ) )