| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfpre2 |
⊢ ( 𝑁 ∈ ran SucMap → pre 𝑁 = ( ℩ 𝑚 𝑚 SucMap 𝑁 ) ) |
| 2 |
1
|
eqcomd |
⊢ ( 𝑁 ∈ ran SucMap → ( ℩ 𝑚 𝑚 SucMap 𝑁 ) = pre 𝑁 ) |
| 3 |
|
preex |
⊢ pre 𝑁 ∈ V |
| 4 |
|
eupre2 |
⊢ ( 𝑁 ∈ ran SucMap → ( 𝑁 ∈ ran SucMap ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) ) |
| 5 |
4
|
ibi |
⊢ ( 𝑁 ∈ ran SucMap → ∃! 𝑚 𝑚 SucMap 𝑁 ) |
| 6 |
|
breq1 |
⊢ ( 𝑚 = pre 𝑁 → ( 𝑚 SucMap 𝑁 ↔ pre 𝑁 SucMap 𝑁 ) ) |
| 7 |
6
|
iota2 |
⊢ ( ( pre 𝑁 ∈ V ∧ ∃! 𝑚 𝑚 SucMap 𝑁 ) → ( pre 𝑁 SucMap 𝑁 ↔ ( ℩ 𝑚 𝑚 SucMap 𝑁 ) = pre 𝑁 ) ) |
| 8 |
3 5 7
|
sylancr |
⊢ ( 𝑁 ∈ ran SucMap → ( pre 𝑁 SucMap 𝑁 ↔ ( ℩ 𝑚 𝑚 SucMap 𝑁 ) = pre 𝑁 ) ) |
| 9 |
2 8
|
mpbird |
⊢ ( 𝑁 ∈ ran SucMap → pre 𝑁 SucMap 𝑁 ) |