Metamath Proof Explorer


Theorem eupre2

Description: Unique predecessor exists on the range of the successor map. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion eupre2 ( 𝑁𝑉 → ( 𝑁 ∈ ran SucMap ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) )

Proof

Step Hyp Ref Expression
1 elrng ( 𝑁𝑉 → ( 𝑁 ∈ ran SucMap ↔ ∃ 𝑚 𝑚 SucMap 𝑁 ) )
2 exeupre ( 𝑁𝑉 → ( ∃ 𝑚 𝑚 SucMap 𝑁 ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) )
3 1 2 bitrd ( 𝑁𝑉 → ( 𝑁 ∈ ran SucMap ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) )