Description: Whenever a predecessor exists, it exists alone. (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exeupre | ⊢ ( 𝑁 ∈ 𝑉 → ( ∃ 𝑚 𝑚 SucMap 𝑁 ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsucmap | ⊢ ( ( 𝑚 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝑚 SucMap 𝑁 ↔ suc 𝑚 = 𝑁 ) ) | |
| 2 | 1 | el2v1 | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑚 SucMap 𝑁 ↔ suc 𝑚 = 𝑁 ) ) |
| 3 | 2 | exbidv | ⊢ ( 𝑁 ∈ 𝑉 → ( ∃ 𝑚 𝑚 SucMap 𝑁 ↔ ∃ 𝑚 suc 𝑚 = 𝑁 ) ) |
| 4 | exeupre2 | ⊢ ( ∃ 𝑚 suc 𝑚 = 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 ) | |
| 5 | 3 4 | bitrdi | ⊢ ( 𝑁 ∈ 𝑉 → ( ∃ 𝑚 𝑚 SucMap 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 ) ) |
| 6 | 2 | eubidv | ⊢ ( 𝑁 ∈ 𝑉 → ( ∃! 𝑚 𝑚 SucMap 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 ) ) |
| 7 | 5 6 | bitr4d | ⊢ ( 𝑁 ∈ 𝑉 → ( ∃ 𝑚 𝑚 SucMap 𝑁 ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) ) |