Metamath Proof Explorer


Theorem exeupre

Description: Whenever a predecessor exists, it exists alone. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion exeupre ( 𝑁𝑉 → ( ∃ 𝑚 𝑚 SucMap 𝑁 ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) )

Proof

Step Hyp Ref Expression
1 brsucmap ( ( 𝑚 ∈ V ∧ 𝑁𝑉 ) → ( 𝑚 SucMap 𝑁 ↔ suc 𝑚 = 𝑁 ) )
2 1 el2v1 ( 𝑁𝑉 → ( 𝑚 SucMap 𝑁 ↔ suc 𝑚 = 𝑁 ) )
3 2 exbidv ( 𝑁𝑉 → ( ∃ 𝑚 𝑚 SucMap 𝑁 ↔ ∃ 𝑚 suc 𝑚 = 𝑁 ) )
4 exeupre2 ( ∃ 𝑚 suc 𝑚 = 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 )
5 3 4 bitrdi ( 𝑁𝑉 → ( ∃ 𝑚 𝑚 SucMap 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 ) )
6 2 eubidv ( 𝑁𝑉 → ( ∃! 𝑚 𝑚 SucMap 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 ) )
7 5 6 bitr4d ( 𝑁𝑉 → ( ∃ 𝑚 𝑚 SucMap 𝑁 ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) )