Description: Whenever a predecessor exists, it exists alone. (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exeupre2 | ⊢ ( ∃ 𝑚 suc 𝑚 = 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopre | ⊢ ∃* 𝑚 suc 𝑚 = 𝑁 | |
| 2 | moeuex | ⊢ ( ∃* 𝑚 suc 𝑚 = 𝑁 → ( ∃ 𝑚 suc 𝑚 = 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ∃ 𝑚 suc 𝑚 = 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 ) |