Metamath Proof Explorer


Theorem exeupre2

Description: Whenever a predecessor exists, it exists alone. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion exeupre2 ( ∃ 𝑚 suc 𝑚 = 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 )

Proof

Step Hyp Ref Expression
1 mopre ∃* 𝑚 suc 𝑚 = 𝑁
2 moeuex ( ∃* 𝑚 suc 𝑚 = 𝑁 → ( ∃ 𝑚 suc 𝑚 = 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 ) )
3 1 2 ax-mp ( ∃ 𝑚 suc 𝑚 = 𝑁 ↔ ∃! 𝑚 suc 𝑚 = 𝑁 )