Description: Whenever a predecessor exists, it exists alone. (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exeupre2 | |- ( E. m suc m = N <-> E! m suc m = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopre | |- E* m suc m = N |
|
| 2 | moeuex | |- ( E* m suc m = N -> ( E. m suc m = N <-> E! m suc m = N ) ) |
|
| 3 | 1 2 | ax-mp | |- ( E. m suc m = N <-> E! m suc m = N ) |