Metamath Proof Explorer


Theorem mopre

Description: There is at most one predecessor of N . (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion mopre ∃* 𝑚 suc 𝑚 = 𝑁

Proof

Step Hyp Ref Expression
1 eqtr3 ( ( suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁 ) → suc 𝑚 = suc 𝑙 )
2 suc11reg ( suc 𝑚 = suc 𝑙𝑚 = 𝑙 )
3 1 2 sylib ( ( suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁 ) → 𝑚 = 𝑙 )
4 3 gen2 𝑚𝑙 ( ( suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁 ) → 𝑚 = 𝑙 )
5 suceq ( 𝑚 = 𝑙 → suc 𝑚 = suc 𝑙 )
6 5 eqeq1d ( 𝑚 = 𝑙 → ( suc 𝑚 = 𝑁 ↔ suc 𝑙 = 𝑁 ) )
7 6 mo4 ( ∃* 𝑚 suc 𝑚 = 𝑁 ↔ ∀ 𝑚𝑙 ( ( suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁 ) → 𝑚 = 𝑙 ) )
8 4 7 mpbir ∃* 𝑚 suc 𝑚 = 𝑁