Description: There is at most one predecessor of N . (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mopre | ⊢ ∃* 𝑚 suc 𝑚 = 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 | ⊢ ( ( suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁 ) → suc 𝑚 = suc 𝑙 ) | |
| 2 | suc11reg | ⊢ ( suc 𝑚 = suc 𝑙 ↔ 𝑚 = 𝑙 ) | |
| 3 | 1 2 | sylib | ⊢ ( ( suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁 ) → 𝑚 = 𝑙 ) |
| 4 | 3 | gen2 | ⊢ ∀ 𝑚 ∀ 𝑙 ( ( suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁 ) → 𝑚 = 𝑙 ) |
| 5 | suceq | ⊢ ( 𝑚 = 𝑙 → suc 𝑚 = suc 𝑙 ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑚 = 𝑙 → ( suc 𝑚 = 𝑁 ↔ suc 𝑙 = 𝑁 ) ) |
| 7 | 6 | mo4 | ⊢ ( ∃* 𝑚 suc 𝑚 = 𝑁 ↔ ∀ 𝑚 ∀ 𝑙 ( ( suc 𝑚 = 𝑁 ∧ suc 𝑙 = 𝑁 ) → 𝑚 = 𝑙 ) ) |
| 8 | 4 7 | mpbir | ⊢ ∃* 𝑚 suc 𝑚 = 𝑁 |