Metamath Proof Explorer


Theorem dfsuccl3

Description: Alternate definition of the class of all successors. (Contributed by Peter Mazsa, 30-Jan-2026)

Ref Expression
Assertion dfsuccl3 Suc = { 𝑛 ∣ ∃! 𝑚 suc 𝑚 = 𝑛 }

Proof

Step Hyp Ref Expression
1 dfsuccl2 Suc = { 𝑛 ∣ ∃ 𝑚 suc 𝑚 = 𝑛 }
2 exeupre2 ( ∃ 𝑚 suc 𝑚 = 𝑛 ↔ ∃! 𝑚 suc 𝑚 = 𝑛 )
3 2 abbii { 𝑛 ∣ ∃ 𝑚 suc 𝑚 = 𝑛 } = { 𝑛 ∣ ∃! 𝑚 suc 𝑚 = 𝑛 }
4 1 3 eqtri Suc = { 𝑛 ∣ ∃! 𝑚 suc 𝑚 = 𝑛 }