Metamath Proof Explorer


Theorem dfsuccl2

Description: Alternate definition of the class of all successors. (Contributed by Peter Mazsa, 29-Jan-2026)

Ref Expression
Assertion dfsuccl2 Suc = { 𝑛 ∣ ∃ 𝑚 suc 𝑚 = 𝑛 }

Proof

Step Hyp Ref Expression
1 df-succl Suc = ran SucMap
2 df-sucmap SucMap = { ⟨ 𝑚 , 𝑛 ⟩ ∣ suc 𝑚 = 𝑛 }
3 2 rneqi ran SucMap = ran { ⟨ 𝑚 , 𝑛 ⟩ ∣ suc 𝑚 = 𝑛 }
4 rnopab ran { ⟨ 𝑚 , 𝑛 ⟩ ∣ suc 𝑚 = 𝑛 } = { 𝑛 ∣ ∃ 𝑚 suc 𝑚 = 𝑛 }
5 1 3 4 3eqtri Suc = { 𝑛 ∣ ∃ 𝑚 suc 𝑚 = 𝑛 }