| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsuccl3 |
⊢ Suc = { 𝑛 ∣ ∃! 𝑚 suc 𝑚 = 𝑛 } |
| 2 |
|
sucidg |
⊢ ( 𝑚 ∈ V → 𝑚 ∈ suc 𝑚 ) |
| 3 |
2
|
elv |
⊢ 𝑚 ∈ suc 𝑚 |
| 4 |
|
eleq2 |
⊢ ( suc 𝑚 = 𝑛 → ( 𝑚 ∈ suc 𝑚 ↔ 𝑚 ∈ 𝑛 ) ) |
| 5 |
3 4
|
mpbii |
⊢ ( suc 𝑚 = 𝑛 → 𝑚 ∈ 𝑛 ) |
| 6 |
|
sssucid |
⊢ 𝑚 ⊆ suc 𝑚 |
| 7 |
|
sseq2 |
⊢ ( suc 𝑚 = 𝑛 → ( 𝑚 ⊆ suc 𝑚 ↔ 𝑚 ⊆ 𝑛 ) ) |
| 8 |
6 7
|
mpbii |
⊢ ( suc 𝑚 = 𝑛 → 𝑚 ⊆ 𝑛 ) |
| 9 |
5 8
|
jca |
⊢ ( suc 𝑚 = 𝑛 → ( 𝑚 ∈ 𝑛 ∧ 𝑚 ⊆ 𝑛 ) ) |
| 10 |
9
|
pm4.71ri |
⊢ ( suc 𝑚 = 𝑛 ↔ ( ( 𝑚 ∈ 𝑛 ∧ 𝑚 ⊆ 𝑛 ) ∧ suc 𝑚 = 𝑛 ) ) |
| 11 |
|
df-3an |
⊢ ( ( 𝑚 ∈ 𝑛 ∧ 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ↔ ( ( 𝑚 ∈ 𝑛 ∧ 𝑚 ⊆ 𝑛 ) ∧ suc 𝑚 = 𝑛 ) ) |
| 12 |
|
3anass |
⊢ ( ( 𝑚 ∈ 𝑛 ∧ 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ↔ ( 𝑚 ∈ 𝑛 ∧ ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ) ) |
| 13 |
10 11 12
|
3bitr2i |
⊢ ( suc 𝑚 = 𝑛 ↔ ( 𝑚 ∈ 𝑛 ∧ ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ) ) |
| 14 |
13
|
eubii |
⊢ ( ∃! 𝑚 suc 𝑚 = 𝑛 ↔ ∃! 𝑚 ( 𝑚 ∈ 𝑛 ∧ ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ) ) |
| 15 |
|
df-reu |
⊢ ( ∃! 𝑚 ∈ 𝑛 ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ↔ ∃! 𝑚 ( 𝑚 ∈ 𝑛 ∧ ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ) ) |
| 16 |
14 15
|
bitr4i |
⊢ ( ∃! 𝑚 suc 𝑚 = 𝑛 ↔ ∃! 𝑚 ∈ 𝑛 ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) ) |
| 17 |
16
|
abbii |
⊢ { 𝑛 ∣ ∃! 𝑚 suc 𝑚 = 𝑛 } = { 𝑛 ∣ ∃! 𝑚 ∈ 𝑛 ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) } |
| 18 |
1 17
|
eqtri |
⊢ Suc = { 𝑛 ∣ ∃! 𝑚 ∈ 𝑛 ( 𝑚 ⊆ 𝑛 ∧ suc 𝑚 = 𝑛 ) } |