Metamath Proof Explorer


Theorem dfsuccl4

Description: Alternate definition that incorporates the most desirable properties of the successor class. (Contributed by Peter Mazsa, 30-Jan-2026)

Ref Expression
Assertion dfsuccl4 Could not format assertion : No typesetting found for |- Suc = { n | E! m e. n ( m C_ n /\ suc m = n ) } with typecode |-

Proof

Step Hyp Ref Expression
1 dfsuccl3 Could not format Suc = { n | E! m suc m = n } : No typesetting found for |- Suc = { n | E! m suc m = n } with typecode |-
2 sucidg m V m suc m
3 2 elv m suc m
4 eleq2 suc m = n m suc m m n
5 3 4 mpbii suc m = n m n
6 sssucid m suc m
7 sseq2 suc m = n m suc m m n
8 6 7 mpbii suc m = n m n
9 5 8 jca suc m = n m n m n
10 9 pm4.71ri suc m = n m n m n suc m = n
11 df-3an m n m n suc m = n m n m n suc m = n
12 3anass m n m n suc m = n m n m n suc m = n
13 10 11 12 3bitr2i suc m = n m n m n suc m = n
14 13 eubii ∃! m suc m = n ∃! m m n m n suc m = n
15 df-reu ∃! m n m n suc m = n ∃! m m n m n suc m = n
16 14 15 bitr4i ∃! m suc m = n ∃! m n m n suc m = n
17 16 abbii n | ∃! m suc m = n = n | ∃! m n m n suc m = n
18 1 17 eqtri Could not format Suc = { n | E! m e. n ( m C_ n /\ suc m = n ) } : No typesetting found for |- Suc = { n | E! m e. n ( m C_ n /\ suc m = n ) } with typecode |-