Metamath Proof Explorer


Theorem dfsuccl4

Description: Alternate definition that incorporates the most desirable properties of the successor class. (Contributed by Peter Mazsa, 30-Jan-2026)

Ref Expression
Assertion dfsuccl4
|- Suc = { n | E! m e. n ( m C_ n /\ suc m = n ) }

Proof

Step Hyp Ref Expression
1 dfsuccl3
 |-  Suc = { n | E! m suc m = n }
2 sucidg
 |-  ( m e. _V -> m e. suc m )
3 2 elv
 |-  m e. suc m
4 eleq2
 |-  ( suc m = n -> ( m e. suc m <-> m e. n ) )
5 3 4 mpbii
 |-  ( suc m = n -> m e. n )
6 sssucid
 |-  m C_ suc m
7 sseq2
 |-  ( suc m = n -> ( m C_ suc m <-> m C_ n ) )
8 6 7 mpbii
 |-  ( suc m = n -> m C_ n )
9 5 8 jca
 |-  ( suc m = n -> ( m e. n /\ m C_ n ) )
10 9 pm4.71ri
 |-  ( suc m = n <-> ( ( m e. n /\ m C_ n ) /\ suc m = n ) )
11 df-3an
 |-  ( ( m e. n /\ m C_ n /\ suc m = n ) <-> ( ( m e. n /\ m C_ n ) /\ suc m = n ) )
12 3anass
 |-  ( ( m e. n /\ m C_ n /\ suc m = n ) <-> ( m e. n /\ ( m C_ n /\ suc m = n ) ) )
13 10 11 12 3bitr2i
 |-  ( suc m = n <-> ( m e. n /\ ( m C_ n /\ suc m = n ) ) )
14 13 eubii
 |-  ( E! m suc m = n <-> E! m ( m e. n /\ ( m C_ n /\ suc m = n ) ) )
15 df-reu
 |-  ( E! m e. n ( m C_ n /\ suc m = n ) <-> E! m ( m e. n /\ ( m C_ n /\ suc m = n ) ) )
16 14 15 bitr4i
 |-  ( E! m suc m = n <-> E! m e. n ( m C_ n /\ suc m = n ) )
17 16 abbii
 |-  { n | E! m suc m = n } = { n | E! m e. n ( m C_ n /\ suc m = n ) }
18 1 17 eqtri
 |-  Suc = { n | E! m e. n ( m C_ n /\ suc m = n ) }