Description: Whenever a predecessor exists, it exists alone. (Contributed by Peter Mazsa, 12-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exeupre | |- ( N e. V -> ( E. m m SucMap N <-> E! m m SucMap N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsucmap | |- ( ( m e. _V /\ N e. V ) -> ( m SucMap N <-> suc m = N ) ) |
|
| 2 | 1 | el2v1 | |- ( N e. V -> ( m SucMap N <-> suc m = N ) ) |
| 3 | 2 | exbidv | |- ( N e. V -> ( E. m m SucMap N <-> E. m suc m = N ) ) |
| 4 | exeupre2 | |- ( E. m suc m = N <-> E! m suc m = N ) |
|
| 5 | 3 4 | bitrdi | |- ( N e. V -> ( E. m m SucMap N <-> E! m suc m = N ) ) |
| 6 | 2 | eubidv | |- ( N e. V -> ( E! m m SucMap N <-> E! m suc m = N ) ) |
| 7 | 5 6 | bitr4d | |- ( N e. V -> ( E. m m SucMap N <-> E! m m SucMap N ) ) |