Metamath Proof Explorer


Theorem eupre

Description: Unique predecessor exists on the successor class. (Contributed by Peter Mazsa, 27-Jan-2026)

Ref Expression
Assertion eupre ( 𝑁𝑉 → ( 𝑁 ∈ Suc ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) )

Proof

Step Hyp Ref Expression
1 df-succl Suc = ran SucMap
2 1 eleq2i ( 𝑁 ∈ Suc ↔ 𝑁 ∈ ran SucMap )
3 eupre2 ( 𝑁𝑉 → ( 𝑁 ∈ ran SucMap ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) )
4 2 3 bitrid ( 𝑁𝑉 → ( 𝑁 ∈ Suc ↔ ∃! 𝑚 𝑚 SucMap 𝑁 ) )