| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brsucmap |
⊢ ( ( 𝐿 ∈ 𝑉 ∧ 𝑁 ∈ 𝑋 ) → ( 𝐿 SucMap 𝑁 ↔ suc 𝐿 = 𝑁 ) ) |
| 2 |
|
brsucmap |
⊢ ( ( 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋 ) → ( 𝑀 SucMap 𝑁 ↔ suc 𝑀 = 𝑁 ) ) |
| 3 |
1 2
|
bi2anan9 |
⊢ ( ( ( 𝐿 ∈ 𝑉 ∧ 𝑁 ∈ 𝑋 ) ∧ ( 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋 ) ) → ( ( 𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁 ) ↔ ( suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁 ) ) ) |
| 4 |
3
|
3impdir |
⊢ ( ( 𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋 ) → ( ( 𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁 ) ↔ ( suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁 ) ) ) |
| 5 |
|
eqtr3 |
⊢ ( ( suc 𝐿 = 𝑁 ∧ suc 𝑀 = 𝑁 ) → suc 𝐿 = suc 𝑀 ) |
| 6 |
4 5
|
biimtrdi |
⊢ ( ( 𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋 ) → ( ( 𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁 ) → suc 𝐿 = suc 𝑀 ) ) |
| 7 |
|
suc11reg |
⊢ ( suc 𝐿 = suc 𝑀 ↔ 𝐿 = 𝑀 ) |
| 8 |
6 7
|
imbitrdi |
⊢ ( ( 𝐿 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ∧ 𝑁 ∈ 𝑋 ) → ( ( 𝐿 SucMap 𝑁 ∧ 𝑀 SucMap 𝑁 ) → 𝐿 = 𝑀 ) ) |