| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brsucmap |
|- ( ( L e. V /\ N e. X ) -> ( L SucMap N <-> suc L = N ) ) |
| 2 |
|
brsucmap |
|- ( ( M e. W /\ N e. X ) -> ( M SucMap N <-> suc M = N ) ) |
| 3 |
1 2
|
bi2anan9 |
|- ( ( ( L e. V /\ N e. X ) /\ ( M e. W /\ N e. X ) ) -> ( ( L SucMap N /\ M SucMap N ) <-> ( suc L = N /\ suc M = N ) ) ) |
| 4 |
3
|
3impdir |
|- ( ( L e. V /\ M e. W /\ N e. X ) -> ( ( L SucMap N /\ M SucMap N ) <-> ( suc L = N /\ suc M = N ) ) ) |
| 5 |
|
eqtr3 |
|- ( ( suc L = N /\ suc M = N ) -> suc L = suc M ) |
| 6 |
4 5
|
biimtrdi |
|- ( ( L e. V /\ M e. W /\ N e. X ) -> ( ( L SucMap N /\ M SucMap N ) -> suc L = suc M ) ) |
| 7 |
|
suc11reg |
|- ( suc L = suc M <-> L = M ) |
| 8 |
6 7
|
imbitrdi |
|- ( ( L e. V /\ M e. W /\ N e. X ) -> ( ( L SucMap N /\ M SucMap N ) -> L = M ) ) |