Metamath Proof Explorer


Theorem sucmapsuc

Description: A set is succeeded by its successor. (Contributed by Peter Mazsa, 7-Jan-2026)

Ref Expression
Assertion sucmapsuc ( 𝑀𝑉𝑀 SucMap suc 𝑀 )

Proof

Step Hyp Ref Expression
1 eqid suc 𝑀 = suc 𝑀
2 sucexg ( 𝑀𝑉 → suc 𝑀 ∈ V )
3 brsucmap ( ( 𝑀𝑉 ∧ suc 𝑀 ∈ V ) → ( 𝑀 SucMap suc 𝑀 ↔ suc 𝑀 = suc 𝑀 ) )
4 2 3 mpdan ( 𝑀𝑉 → ( 𝑀 SucMap suc 𝑀 ↔ suc 𝑀 = suc 𝑀 ) )
5 1 4 mpbiri ( 𝑀𝑉𝑀 SucMap suc 𝑀 )