| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 2 |  | prmonn2 | ⊢ ( 6  ∈  ℕ  →  ( #p ‘ 6 )  =  if ( 6  ∈  ℙ ,  ( ( #p ‘ ( 6  −  1 ) )  ·  6 ) ,  ( #p ‘ ( 6  −  1 ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( #p ‘ 6 )  =  if ( 6  ∈  ℙ ,  ( ( #p ‘ ( 6  −  1 ) )  ·  6 ) ,  ( #p ‘ ( 6  −  1 ) ) ) | 
						
							| 4 |  | 6nprm | ⊢ ¬  6  ∈  ℙ | 
						
							| 5 | 4 | iffalsei | ⊢ if ( 6  ∈  ℙ ,  ( ( #p ‘ ( 6  −  1 ) )  ·  6 ) ,  ( #p ‘ ( 6  −  1 ) ) )  =  ( #p ‘ ( 6  −  1 ) ) | 
						
							| 6 | 3 5 | eqtri | ⊢ ( #p ‘ 6 )  =  ( #p ‘ ( 6  −  1 ) ) | 
						
							| 7 |  | 6m1e5 | ⊢ ( 6  −  1 )  =  5 | 
						
							| 8 | 7 | fveq2i | ⊢ ( #p ‘ ( 6  −  1 ) )  =  ( #p ‘ 5 ) | 
						
							| 9 |  | prmo5 | ⊢ ( #p ‘ 5 )  =  ; 3 0 | 
						
							| 10 | 8 9 | eqtri | ⊢ ( #p ‘ ( 6  −  1 ) )  =  ; 3 0 | 
						
							| 11 | 6 10 | eqtri | ⊢ ( #p ‘ 6 )  =  ; 3 0 |