| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfvalfi.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | psgnfvalfi.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | psgnfvalfi.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 4 |  | psgnfvalfi.n | ⊢ 𝑁  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑃  ∈  𝐵 )  →  𝑃  ∈  𝐵 ) | 
						
							| 6 | 1 2 | sygbasnfpfi | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑃  ∈  𝐵 )  →  dom  ( 𝑃  ∖   I  )  ∈  Fin ) | 
						
							| 7 | 1 4 2 | psgneldm | ⊢ ( 𝑃  ∈  dom  𝑁  ↔  ( 𝑃  ∈  𝐵  ∧  dom  ( 𝑃  ∖   I  )  ∈  Fin ) ) | 
						
							| 8 | 5 6 7 | sylanbrc | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑃  ∈  𝐵 )  →  𝑃  ∈  dom  𝑁 ) | 
						
							| 9 | 1 3 4 | psgnval | ⊢ ( 𝑃  ∈  dom  𝑁  →  ( 𝑁 ‘ 𝑃 )  =  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑃  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑃  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑃 )  =  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑃  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |