| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfvalfi.g |  |-  G = ( SymGrp ` D ) | 
						
							| 2 |  | psgnfvalfi.b |  |-  B = ( Base ` G ) | 
						
							| 3 |  | psgnfvalfi.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 4 |  | psgnfvalfi.n |  |-  N = ( pmSgn ` D ) | 
						
							| 5 |  | simpr |  |-  ( ( D e. Fin /\ P e. B ) -> P e. B ) | 
						
							| 6 | 1 2 | sygbasnfpfi |  |-  ( ( D e. Fin /\ P e. B ) -> dom ( P \ _I ) e. Fin ) | 
						
							| 7 | 1 4 2 | psgneldm |  |-  ( P e. dom N <-> ( P e. B /\ dom ( P \ _I ) e. Fin ) ) | 
						
							| 8 | 5 6 7 | sylanbrc |  |-  ( ( D e. Fin /\ P e. B ) -> P e. dom N ) | 
						
							| 9 | 1 3 4 | psgnval |  |-  ( P e. dom N -> ( N ` P ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( D e. Fin /\ P e. B ) -> ( N ` P ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |