Metamath Proof Explorer
Description: Value of addition in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
psr1plusg.y |
⊢ 𝑌 = ( PwSer1 ‘ 𝑅 ) |
|
|
psr1plusg.s |
⊢ 𝑆 = ( 1o mPwSer 𝑅 ) |
|
|
psr1plusg.p |
⊢ + = ( +g ‘ 𝑌 ) |
|
Assertion |
psr1plusg |
⊢ + = ( +g ‘ 𝑆 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psr1plusg.y |
⊢ 𝑌 = ( PwSer1 ‘ 𝑅 ) |
| 2 |
|
psr1plusg.s |
⊢ 𝑆 = ( 1o mPwSer 𝑅 ) |
| 3 |
|
psr1plusg.p |
⊢ + = ( +g ‘ 𝑌 ) |
| 4 |
1
|
psr1val |
⊢ 𝑌 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) |
| 5 |
|
0ss |
⊢ ∅ ⊆ ( 1o × 1o ) |
| 6 |
5
|
a1i |
⊢ ( ⊤ → ∅ ⊆ ( 1o × 1o ) ) |
| 7 |
2 4 6
|
opsrplusg |
⊢ ( ⊤ → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑌 ) ) |
| 8 |
7
|
mptru |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑌 ) |
| 9 |
3 8
|
eqtr4i |
⊢ + = ( +g ‘ 𝑆 ) |