Metamath Proof Explorer


Theorem pthdifv

Description: The vertices of a path are distinct (except the first and last vertex), so the restricted vertex function is one-to-one. (Contributed by AV, 2-Oct-2025)

Ref Expression
Assertion pthdifv ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 trliswlk ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
2 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
3 2 wlkp ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )
4 fz1ssfz0 ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) )
5 4 a1i ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) )
6 3 5 fssresd ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )
7 1 6 syl ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )
8 7 anim1i ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) )
9 8 3adant3 ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) )
10 dfpth2 ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )
11 df-f1 ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ↔ ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) )
12 9 10 11 3imtr4i ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) )