Step |
Hyp |
Ref |
Expression |
1 |
|
trliswlk |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
2
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
4 |
|
fz1ssfz0 |
⊢ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
5 |
4
|
a1i |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
6 |
3 5
|
fssresd |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
7 |
1 6
|
syl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
8 |
7
|
anim1i |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
10 |
|
dfpth2 |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
11 |
|
df-f1 |
⊢ ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ↔ ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
12 |
9 10 11
|
3imtr4i |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |