Step |
Hyp |
Ref |
Expression |
1 |
|
trliswlk |
|- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
2
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
4 |
|
fz1ssfz0 |
|- ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
5 |
4
|
a1i |
|- ( F ( Walks ` G ) P -> ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
6 |
3 5
|
fssresd |
|- ( F ( Walks ` G ) P -> ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
7 |
1 6
|
syl |
|- ( F ( Trails ` G ) P -> ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
8 |
7
|
anim1i |
|- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) -> ( ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
9 |
8
|
3adant3 |
|- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
10 |
|
dfpth2 |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
11 |
|
df-f1 |
|- ( ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) <-> ( ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
12 |
9 10 11
|
3imtr4i |
|- ( F ( Paths ` G ) P -> ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |