Step |
Hyp |
Ref |
Expression |
1 |
|
ispth |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
2 |
|
istrl |
|- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
3 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
4 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
5 |
4
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
6 |
|
ffn |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> P Fn ( 0 ... ( # ` F ) ) ) |
7 |
6
|
adantl |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> P Fn ( 0 ... ( # ` F ) ) ) |
8 |
|
0elfz |
|- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
9 |
8
|
adantr |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> 0 e. ( 0 ... ( # ` F ) ) ) |
10 |
|
nn0fz0 |
|- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
11 |
10
|
biimpi |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
12 |
11
|
adantr |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
13 |
7 9 12
|
3jca |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) ) |
14 |
3 5 13
|
syl2anc |
|- ( F ( Walks ` G ) P -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) ) |
15 |
14
|
adantr |
|- ( ( F ( Walks ` G ) P /\ Fun `' F ) -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) ) |
16 |
2 15
|
sylbi |
|- ( F ( Trails ` G ) P -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) ) |
17 |
|
fnimapr |
|- ( ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) -> ( P " { 0 , ( # ` F ) } ) = { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) |
18 |
16 17
|
syl |
|- ( F ( Trails ` G ) P -> ( P " { 0 , ( # ` F ) } ) = { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) |
19 |
18
|
ineq1d |
|- ( F ( Trails ` G ) P -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = ( { ( P ` 0 ) , ( P ` ( # ` F ) ) } i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
20 |
19
|
eqeq1d |
|- ( F ( Trails ` G ) P -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( { ( P ` 0 ) , ( P ` ( # ` F ) ) } i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
21 |
|
disj |
|- ( ( { ( P ` 0 ) , ( P ` ( # ` F ) ) } i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> A. x e. { ( P ` 0 ) , ( P ` ( # ` F ) ) } -. x e. ( P " ( 1 ..^ ( # ` F ) ) ) ) |
22 |
|
fvex |
|- ( P ` 0 ) e. _V |
23 |
|
fvex |
|- ( P ` ( # ` F ) ) e. _V |
24 |
|
eleq1 |
|- ( x = ( P ` 0 ) -> ( x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
25 |
24
|
notbid |
|- ( x = ( P ` 0 ) -> ( -. x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> -. ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
26 |
|
eleq1 |
|- ( x = ( P ` ( # ` F ) ) -> ( x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
27 |
26
|
notbid |
|- ( x = ( P ` ( # ` F ) ) -> ( -. x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
28 |
22 23 25 27
|
ralpr |
|- ( A. x e. { ( P ` 0 ) , ( P ` ( # ` F ) ) } -. x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( -. ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
29 |
|
df-nel |
|- ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) <-> -. ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) |
30 |
29
|
bicomi |
|- ( -. ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) |
31 |
28 30
|
bianbi |
|- ( A. x e. { ( P ` 0 ) , ( P ` ( # ` F ) ) } -. x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
32 |
21 31
|
bitri |
|- ( ( { ( P ` 0 ) , ( P ` ( # ` F ) ) } i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
33 |
20 32
|
bitrdi |
|- ( F ( Trails ` G ) P -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
34 |
33
|
anbi2d |
|- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) <-> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) ) |
35 |
|
ancom |
|- ( ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> ( -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
36 |
35
|
bianass |
|- ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) <-> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
37 |
36
|
a1i |
|- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) <-> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
38 |
|
noel |
|- -. ( P ` ( # ` F ) ) e. (/) |
39 |
38
|
biantru |
|- ( Fun `' ( P |` (/) ) <-> ( Fun `' ( P |` (/) ) /\ -. ( P ` ( # ` F ) ) e. (/) ) ) |
40 |
39
|
bicomi |
|- ( ( Fun `' ( P |` (/) ) /\ -. ( P ` ( # ` F ) ) e. (/) ) <-> Fun `' ( P |` (/) ) ) |
41 |
40
|
a1i |
|- ( ( # ` F ) = 0 -> ( ( Fun `' ( P |` (/) ) /\ -. ( P ` ( # ` F ) ) e. (/) ) <-> Fun `' ( P |` (/) ) ) ) |
42 |
|
oveq2 |
|- ( ( # ` F ) = 0 -> ( 1 ..^ ( # ` F ) ) = ( 1 ..^ 0 ) ) |
43 |
|
0le1 |
|- 0 <_ 1 |
44 |
|
1z |
|- 1 e. ZZ |
45 |
|
0z |
|- 0 e. ZZ |
46 |
|
fzon |
|- ( ( 1 e. ZZ /\ 0 e. ZZ ) -> ( 0 <_ 1 <-> ( 1 ..^ 0 ) = (/) ) ) |
47 |
44 45 46
|
mp2an |
|- ( 0 <_ 1 <-> ( 1 ..^ 0 ) = (/) ) |
48 |
43 47
|
mpbi |
|- ( 1 ..^ 0 ) = (/) |
49 |
42 48
|
eqtrdi |
|- ( ( # ` F ) = 0 -> ( 1 ..^ ( # ` F ) ) = (/) ) |
50 |
49
|
reseq2d |
|- ( ( # ` F ) = 0 -> ( P |` ( 1 ..^ ( # ` F ) ) ) = ( P |` (/) ) ) |
51 |
50
|
cnveqd |
|- ( ( # ` F ) = 0 -> `' ( P |` ( 1 ..^ ( # ` F ) ) ) = `' ( P |` (/) ) ) |
52 |
51
|
funeqd |
|- ( ( # ` F ) = 0 -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) <-> Fun `' ( P |` (/) ) ) ) |
53 |
49
|
imaeq2d |
|- ( ( # ` F ) = 0 -> ( P " ( 1 ..^ ( # ` F ) ) ) = ( P " (/) ) ) |
54 |
|
ima0 |
|- ( P " (/) ) = (/) |
55 |
53 54
|
eqtrdi |
|- ( ( # ` F ) = 0 -> ( P " ( 1 ..^ ( # ` F ) ) ) = (/) ) |
56 |
55
|
eleq2d |
|- ( ( # ` F ) = 0 -> ( ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. (/) ) ) |
57 |
56
|
notbid |
|- ( ( # ` F ) = 0 -> ( -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> -. ( P ` ( # ` F ) ) e. (/) ) ) |
58 |
52 57
|
anbi12d |
|- ( ( # ` F ) = 0 -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> ( Fun `' ( P |` (/) ) /\ -. ( P ` ( # ` F ) ) e. (/) ) ) ) |
59 |
|
oveq2 |
|- ( ( # ` F ) = 0 -> ( 1 ... ( # ` F ) ) = ( 1 ... 0 ) ) |
60 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
61 |
59 60
|
eqtrdi |
|- ( ( # ` F ) = 0 -> ( 1 ... ( # ` F ) ) = (/) ) |
62 |
61
|
reseq2d |
|- ( ( # ` F ) = 0 -> ( P |` ( 1 ... ( # ` F ) ) ) = ( P |` (/) ) ) |
63 |
62
|
cnveqd |
|- ( ( # ` F ) = 0 -> `' ( P |` ( 1 ... ( # ` F ) ) ) = `' ( P |` (/) ) ) |
64 |
63
|
funeqd |
|- ( ( # ` F ) = 0 -> ( Fun `' ( P |` ( 1 ... ( # ` F ) ) ) <-> Fun `' ( P |` (/) ) ) ) |
65 |
41 58 64
|
3bitr4d |
|- ( ( # ` F ) = 0 -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
66 |
65
|
a1d |
|- ( ( # ` F ) = 0 -> ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) |
67 |
|
df-nel |
|- ( ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) <-> -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) |
68 |
67
|
bicomi |
|- ( -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) |
69 |
68
|
anbi2i |
|- ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
70 |
|
trliswlk |
|- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
71 |
3 10
|
sylib |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
72 |
|
fzonel |
|- -. ( # ` F ) e. ( 1 ..^ ( # ` F ) ) |
73 |
72
|
a1i |
|- ( F ( Walks ` G ) P -> -. ( # ` F ) e. ( 1 ..^ ( # ` F ) ) ) |
74 |
71 73
|
eldifd |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. ( ( 0 ... ( # ` F ) ) \ ( 1 ..^ ( # ` F ) ) ) ) |
75 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
76 |
|
fzoss1 |
|- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
77 |
75 76
|
mp1i |
|- ( F ( Walks ` G ) P -> ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
78 |
|
fzossfz |
|- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
79 |
77 78
|
sstrdi |
|- ( F ( Walks ` G ) P -> ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
80 |
5 74 79
|
3jca |
|- ( F ( Walks ` G ) P -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. ( ( 0 ... ( # ` F ) ) \ ( 1 ..^ ( # ` F ) ) ) /\ ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) ) |
81 |
|
resf1ext2b |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. ( ( 0 ... ( # ` F ) ) \ ( 1 ..^ ( # ` F ) ) ) /\ ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) ) ) |
82 |
70 80 81
|
3syl |
|- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) ) ) |
83 |
69 82
|
bitrid |
|- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) ) ) |
84 |
83
|
adantl |
|- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) ) ) |
85 |
|
elnnne0 |
|- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ ( # ` F ) =/= 0 ) ) |
86 |
|
elnnuz |
|- ( ( # ` F ) e. NN <-> ( # ` F ) e. ( ZZ>= ` 1 ) ) |
87 |
85 86
|
sylbb1 |
|- ( ( ( # ` F ) e. NN0 /\ ( # ` F ) =/= 0 ) -> ( # ` F ) e. ( ZZ>= ` 1 ) ) |
88 |
87
|
ex |
|- ( ( # ` F ) e. NN0 -> ( ( # ` F ) =/= 0 -> ( # ` F ) e. ( ZZ>= ` 1 ) ) ) |
89 |
70 3 88
|
3syl |
|- ( F ( Trails ` G ) P -> ( ( # ` F ) =/= 0 -> ( # ` F ) e. ( ZZ>= ` 1 ) ) ) |
90 |
89
|
impcom |
|- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( # ` F ) e. ( ZZ>= ` 1 ) ) |
91 |
|
fzisfzounsn |
|- ( ( # ` F ) e. ( ZZ>= ` 1 ) -> ( 1 ... ( # ` F ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
92 |
90 91
|
syl |
|- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( 1 ... ( # ` F ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
93 |
92
|
eqcomd |
|- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) = ( 1 ... ( # ` F ) ) ) |
94 |
93
|
reseq2d |
|- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) = ( P |` ( 1 ... ( # ` F ) ) ) ) |
95 |
94
|
cnveqd |
|- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) = `' ( P |` ( 1 ... ( # ` F ) ) ) ) |
96 |
95
|
funeqd |
|- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( Fun `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
97 |
84 96
|
bitrd |
|- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
98 |
97
|
ex |
|- ( ( # ` F ) =/= 0 -> ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) |
99 |
66 98
|
pm2.61ine |
|- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
100 |
99
|
anbi1d |
|- ( F ( Trails ` G ) P -> ( ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> ( Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
101 |
34 37 100
|
3bitrd |
|- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) <-> ( Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
102 |
101
|
pm5.32i |
|- ( ( F ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) <-> ( F ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
103 |
|
3anass |
|- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) <-> ( F ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) ) |
104 |
|
3anass |
|- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> ( F ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
105 |
102 103 104
|
3bitr4i |
|- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
106 |
1 105
|
bitri |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |