| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwmnd.b | ⊢ ( Base ‘ 𝑀 )  =  𝒫  𝐴 | 
						
							| 2 |  | pwmnd.p | ⊢ ( +g ‘ 𝑀 )  =  ( 𝑥  ∈  𝒫  𝐴 ,  𝑦  ∈  𝒫  𝐴  ↦  ( 𝑥  ∪  𝑦 ) ) | 
						
							| 3 | 2 | a1i | ⊢ ( ( 𝑋  ∈  𝒫  𝐴  ∧  𝑌  ∈  𝒫  𝐴 )  →  ( +g ‘ 𝑀 )  =  ( 𝑥  ∈  𝒫  𝐴 ,  𝑦  ∈  𝒫  𝐴  ↦  ( 𝑥  ∪  𝑦 ) ) ) | 
						
							| 4 |  | uneq12 | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( 𝑥  ∪  𝑦 )  =  ( 𝑋  ∪  𝑌 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝑋  ∈  𝒫  𝐴  ∧  𝑌  ∈  𝒫  𝐴 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑥  ∪  𝑦 )  =  ( 𝑋  ∪  𝑌 ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝑋  ∈  𝒫  𝐴  ∧  𝑌  ∈  𝒫  𝐴 )  →  𝑋  ∈  𝒫  𝐴 ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝑋  ∈  𝒫  𝐴  ∧  𝑌  ∈  𝒫  𝐴 )  →  𝑌  ∈  𝒫  𝐴 ) | 
						
							| 8 |  | unexg | ⊢ ( ( 𝑋  ∈  𝒫  𝐴  ∧  𝑌  ∈  𝒫  𝐴 )  →  ( 𝑋  ∪  𝑌 )  ∈  V ) | 
						
							| 9 | 3 5 6 7 8 | ovmpod | ⊢ ( ( 𝑋  ∈  𝒫  𝐴  ∧  𝑌  ∈  𝒫  𝐴 )  →  ( 𝑋 ( +g ‘ 𝑀 ) 𝑌 )  =  ( 𝑋  ∪  𝑌 ) ) |