| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwmnd.b | ⊢ ( Base ‘ 𝑀 )  =  𝒫  𝐴 | 
						
							| 2 |  | pwmnd.p | ⊢ ( +g ‘ 𝑀 )  =  ( 𝑥  ∈  𝒫  𝐴 ,  𝑦  ∈  𝒫  𝐴  ↦  ( 𝑥  ∪  𝑦 ) ) | 
						
							| 3 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝐴 | 
						
							| 4 | 1 | eqcomi | ⊢ 𝒫  𝐴  =  ( Base ‘ 𝑀 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 7 |  | id | ⊢ ( ∅  ∈  𝒫  𝐴  →  ∅  ∈  𝒫  𝐴 ) | 
						
							| 8 | 1 2 | pwmndgplus | ⊢ ( ( ∅  ∈  𝒫  𝐴  ∧  𝑧  ∈  𝒫  𝐴 )  →  ( ∅ ( +g ‘ 𝑀 ) 𝑧 )  =  ( ∅  ∪  𝑧 ) ) | 
						
							| 9 |  | 0un | ⊢ ( ∅  ∪  𝑧 )  =  𝑧 | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( ( ∅  ∈  𝒫  𝐴  ∧  𝑧  ∈  𝒫  𝐴 )  →  ( ∅ ( +g ‘ 𝑀 ) 𝑧 )  =  𝑧 ) | 
						
							| 11 | 1 2 | pwmndgplus | ⊢ ( ( 𝑧  ∈  𝒫  𝐴  ∧  ∅  ∈  𝒫  𝐴 )  →  ( 𝑧 ( +g ‘ 𝑀 ) ∅ )  =  ( 𝑧  ∪  ∅ ) ) | 
						
							| 12 | 11 | ancoms | ⊢ ( ( ∅  ∈  𝒫  𝐴  ∧  𝑧  ∈  𝒫  𝐴 )  →  ( 𝑧 ( +g ‘ 𝑀 ) ∅ )  =  ( 𝑧  ∪  ∅ ) ) | 
						
							| 13 |  | un0 | ⊢ ( 𝑧  ∪  ∅ )  =  𝑧 | 
						
							| 14 | 12 13 | eqtrdi | ⊢ ( ( ∅  ∈  𝒫  𝐴  ∧  𝑧  ∈  𝒫  𝐴 )  →  ( 𝑧 ( +g ‘ 𝑀 ) ∅ )  =  𝑧 ) | 
						
							| 15 | 4 5 6 7 10 14 | ismgmid2 | ⊢ ( ∅  ∈  𝒫  𝐴  →  ∅  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 16 | 15 | eqcomd | ⊢ ( ∅  ∈  𝒫  𝐴  →  ( 0g ‘ 𝑀 )  =  ∅ ) | 
						
							| 17 | 3 16 | ax-mp | ⊢ ( 0g ‘ 𝑀 )  =  ∅ |