| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwmnd.b | ⊢ ( Base ‘ 𝑀 )  =  𝒫  𝐴 | 
						
							| 2 |  | pwmnd.p | ⊢ ( +g ‘ 𝑀 )  =  ( 𝑥  ∈  𝒫  𝐴 ,  𝑦  ∈  𝒫  𝐴  ↦  ( 𝑥  ∪  𝑦 ) ) | 
						
							| 3 | 1 | eleq2i | ⊢ ( 𝑎  ∈  ( Base ‘ 𝑀 )  ↔  𝑎  ∈  𝒫  𝐴 ) | 
						
							| 4 | 1 | eleq2i | ⊢ ( 𝑏  ∈  ( Base ‘ 𝑀 )  ↔  𝑏  ∈  𝒫  𝐴 ) | 
						
							| 5 |  | pwuncl | ⊢ ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  →  ( 𝑎  ∪  𝑏 )  ∈  𝒫  𝐴 ) | 
						
							| 6 | 1 2 | pwmndgplus | ⊢ ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  =  ( 𝑎  ∪  𝑏 ) ) | 
						
							| 7 | 1 | a1i | ⊢ ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  →  ( Base ‘ 𝑀 )  =  𝒫  𝐴 ) | 
						
							| 8 | 5 6 7 | 3eltr4d | ⊢ ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 9 | 1 | eleq2i | ⊢ ( 𝑐  ∈  ( Base ‘ 𝑀 )  ↔  𝑐  ∈  𝒫  𝐴 ) | 
						
							| 10 |  | unass | ⊢ ( ( 𝑎  ∪  𝑏 )  ∪  𝑐 )  =  ( 𝑎  ∪  ( 𝑏  ∪  𝑐 ) ) | 
						
							| 11 | 6 | adantr | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  =  ( 𝑎  ∪  𝑏 ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝑎  ∪  𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) ) | 
						
							| 13 | 1 2 | pwmndgplus | ⊢ ( ( ( 𝑎  ∪  𝑏 )  ∈  𝒫  𝐴  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( ( 𝑎  ∪  𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝑎  ∪  𝑏 )  ∪  𝑐 ) ) | 
						
							| 14 | 5 13 | sylan | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( ( 𝑎  ∪  𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝑎  ∪  𝑏 )  ∪  𝑐 ) ) | 
						
							| 15 | 12 14 | eqtrd | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝑎  ∪  𝑏 )  ∪  𝑐 ) ) | 
						
							| 16 | 1 2 | pwmndgplus | ⊢ ( ( 𝑏  ∈  𝒫  𝐴  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑏  ∪  𝑐 ) ) | 
						
							| 17 | 16 | adantll | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑏  ∪  𝑐 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏  ∪  𝑐 ) ) ) | 
						
							| 19 |  | simpll | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  𝑎  ∈  𝒫  𝐴 ) | 
						
							| 20 |  | pwuncl | ⊢ ( ( 𝑏  ∈  𝒫  𝐴  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( 𝑏  ∪  𝑐 )  ∈  𝒫  𝐴 ) | 
						
							| 21 | 20 | adantll | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( 𝑏  ∪  𝑐 )  ∈  𝒫  𝐴 ) | 
						
							| 22 | 19 21 | jca | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( 𝑎  ∈  𝒫  𝐴  ∧  ( 𝑏  ∪  𝑐 )  ∈  𝒫  𝐴 ) ) | 
						
							| 23 | 1 2 | pwmndgplus | ⊢ ( ( 𝑎  ∈  𝒫  𝐴  ∧  ( 𝑏  ∪  𝑐 )  ∈  𝒫  𝐴 )  →  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏  ∪  𝑐 ) )  =  ( 𝑎  ∪  ( 𝑏  ∪  𝑐 ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏  ∪  𝑐 ) )  =  ( 𝑎  ∪  ( 𝑏  ∪  𝑐 ) ) ) | 
						
							| 25 | 18 24 | eqtrd | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝑎  ∪  ( 𝑏  ∪  𝑐 ) ) ) | 
						
							| 26 | 10 15 25 | 3eqtr4a | ⊢ ( ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  ∧  𝑐  ∈  𝒫  𝐴 )  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) | 
						
							| 27 | 26 | ex | ⊢ ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  →  ( 𝑐  ∈  𝒫  𝐴  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 28 | 9 27 | biimtrid | ⊢ ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  →  ( 𝑐  ∈  ( Base ‘ 𝑀 )  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 29 | 28 | ralrimiv | ⊢ ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  →  ∀ 𝑐  ∈  ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) | 
						
							| 30 | 8 29 | jca | ⊢ ( ( 𝑎  ∈  𝒫  𝐴  ∧  𝑏  ∈  𝒫  𝐴 )  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  ( Base ‘ 𝑀 )  ∧  ∀ 𝑐  ∈  ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 31 | 3 4 30 | syl2anb | ⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑀 )  ∧  𝑏  ∈  ( Base ‘ 𝑀 ) )  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  ( Base ‘ 𝑀 )  ∧  ∀ 𝑐  ∈  ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 32 | 31 | rgen2 | ⊢ ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ∀ 𝑏  ∈  ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  ( Base ‘ 𝑀 )  ∧  ∀ 𝑐  ∈  ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) | 
						
							| 33 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 34 |  | eleq1 | ⊢ ( 𝑒  =  ∅  →  ( 𝑒  ∈  ( Base ‘ 𝑀 )  ↔  ∅  ∈  ( Base ‘ 𝑀 ) ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑒  =  ∅  →  ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 )  =  ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) ) | 
						
							| 36 | 35 | eqeq1d | ⊢ ( 𝑒  =  ∅  →  ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ↔  ( ∅ ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎 ) ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝑒  =  ∅  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) ) | 
						
							| 38 | 37 | eqeq1d | ⊢ ( 𝑒  =  ∅  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 )  =  𝑎  ↔  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  𝑎 ) ) | 
						
							| 39 | 36 38 | anbi12d | ⊢ ( 𝑒  =  ∅  →  ( ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 )  =  𝑎 )  ↔  ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  𝑎 ) ) ) | 
						
							| 40 | 39 | ralbidv | ⊢ ( 𝑒  =  ∅  →  ( ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 )  =  𝑎 )  ↔  ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  𝑎 ) ) ) | 
						
							| 41 | 34 40 | anbi12d | ⊢ ( 𝑒  =  ∅  →  ( ( 𝑒  ∈  ( Base ‘ 𝑀 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 )  =  𝑎 ) )  ↔  ( ∅  ∈  ( Base ‘ 𝑀 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  𝑎 ) ) ) ) | 
						
							| 42 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝐴 | 
						
							| 43 | 42 1 | eleqtrri | ⊢ ∅  ∈  ( Base ‘ 𝑀 ) | 
						
							| 44 | 1 2 | pwmndgplus | ⊢ ( ( ∅  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐴 )  →  ( ∅ ( +g ‘ 𝑀 ) 𝑎 )  =  ( ∅  ∪  𝑎 ) ) | 
						
							| 45 |  | 0un | ⊢ ( ∅  ∪  𝑎 )  =  𝑎 | 
						
							| 46 | 44 45 | eqtrdi | ⊢ ( ( ∅  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐴 )  →  ( ∅ ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎 ) | 
						
							| 47 | 1 2 | pwmndgplus | ⊢ ( ( 𝑎  ∈  𝒫  𝐴  ∧  ∅  ∈  𝒫  𝐴 )  →  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  ( 𝑎  ∪  ∅ ) ) | 
						
							| 48 | 47 | ancoms | ⊢ ( ( ∅  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐴 )  →  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  ( 𝑎  ∪  ∅ ) ) | 
						
							| 49 |  | un0 | ⊢ ( 𝑎  ∪  ∅ )  =  𝑎 | 
						
							| 50 | 48 49 | eqtrdi | ⊢ ( ( ∅  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐴 )  →  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  𝑎 ) | 
						
							| 51 | 46 50 | jca | ⊢ ( ( ∅  ∈  𝒫  𝐴  ∧  𝑎  ∈  𝒫  𝐴 )  →  ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  𝑎 ) ) | 
						
							| 52 | 42 51 | mpan | ⊢ ( 𝑎  ∈  𝒫  𝐴  →  ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  𝑎 ) ) | 
						
							| 53 | 3 52 | sylbi | ⊢ ( 𝑎  ∈  ( Base ‘ 𝑀 )  →  ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  𝑎 ) ) | 
						
							| 54 | 53 | rgen | ⊢ ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  𝑎 ) | 
						
							| 55 | 43 54 | pm3.2i | ⊢ ( ∅  ∈  ( Base ‘ 𝑀 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) ∅ )  =  𝑎 ) ) | 
						
							| 56 | 33 41 55 | ceqsexv2d | ⊢ ∃ 𝑒 ( 𝑒  ∈  ( Base ‘ 𝑀 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 )  =  𝑎 ) ) | 
						
							| 57 |  | df-rex | ⊢ ( ∃ 𝑒  ∈  ( Base ‘ 𝑀 ) ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 )  =  𝑎 )  ↔  ∃ 𝑒 ( 𝑒  ∈  ( Base ‘ 𝑀 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 )  =  𝑎 ) ) ) | 
						
							| 58 | 56 57 | mpbir | ⊢ ∃ 𝑒  ∈  ( Base ‘ 𝑀 ) ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 )  =  𝑎 ) | 
						
							| 59 | 32 58 | pm3.2i | ⊢ ( ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ∀ 𝑏  ∈  ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  ( Base ‘ 𝑀 )  ∧  ∀ 𝑐  ∈  ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) )  ∧  ∃ 𝑒  ∈  ( Base ‘ 𝑀 ) ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 )  =  𝑎 ) ) | 
						
							| 60 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 61 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 62 | 60 61 | ismnd | ⊢ ( 𝑀  ∈  Mnd  ↔  ( ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ∀ 𝑏  ∈  ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  ( Base ‘ 𝑀 )  ∧  ∀ 𝑐  ∈  ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) )  ∧  ∃ 𝑒  ∈  ( Base ‘ 𝑀 ) ∀ 𝑎  ∈  ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 )  =  𝑎 ) ) ) | 
						
							| 63 | 59 62 | mpbir | ⊢ 𝑀  ∈  Mnd |