| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwmnd.b |  |-  ( Base ` M ) = ~P A | 
						
							| 2 |  | pwmnd.p |  |-  ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) | 
						
							| 3 | 1 | eleq2i |  |-  ( a e. ( Base ` M ) <-> a e. ~P A ) | 
						
							| 4 | 1 | eleq2i |  |-  ( b e. ( Base ` M ) <-> b e. ~P A ) | 
						
							| 5 |  | pwuncl |  |-  ( ( a e. ~P A /\ b e. ~P A ) -> ( a u. b ) e. ~P A ) | 
						
							| 6 | 1 2 | pwmndgplus |  |-  ( ( a e. ~P A /\ b e. ~P A ) -> ( a ( +g ` M ) b ) = ( a u. b ) ) | 
						
							| 7 | 1 | a1i |  |-  ( ( a e. ~P A /\ b e. ~P A ) -> ( Base ` M ) = ~P A ) | 
						
							| 8 | 5 6 7 | 3eltr4d |  |-  ( ( a e. ~P A /\ b e. ~P A ) -> ( a ( +g ` M ) b ) e. ( Base ` M ) ) | 
						
							| 9 | 1 | eleq2i |  |-  ( c e. ( Base ` M ) <-> c e. ~P A ) | 
						
							| 10 |  | unass |  |-  ( ( a u. b ) u. c ) = ( a u. ( b u. c ) ) | 
						
							| 11 | 6 | adantr |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) b ) = ( a u. b ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( ( a u. b ) ( +g ` M ) c ) ) | 
						
							| 13 | 1 2 | pwmndgplus |  |-  ( ( ( a u. b ) e. ~P A /\ c e. ~P A ) -> ( ( a u. b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) | 
						
							| 14 | 5 13 | sylan |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a u. b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) | 
						
							| 15 | 12 14 | eqtrd |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) | 
						
							| 16 | 1 2 | pwmndgplus |  |-  ( ( b e. ~P A /\ c e. ~P A ) -> ( b ( +g ` M ) c ) = ( b u. c ) ) | 
						
							| 17 | 16 | adantll |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( b ( +g ` M ) c ) = ( b u. c ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b ( +g ` M ) c ) ) = ( a ( +g ` M ) ( b u. c ) ) ) | 
						
							| 19 |  | simpll |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> a e. ~P A ) | 
						
							| 20 |  | pwuncl |  |-  ( ( b e. ~P A /\ c e. ~P A ) -> ( b u. c ) e. ~P A ) | 
						
							| 21 | 20 | adantll |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( b u. c ) e. ~P A ) | 
						
							| 22 | 19 21 | jca |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a e. ~P A /\ ( b u. c ) e. ~P A ) ) | 
						
							| 23 | 1 2 | pwmndgplus |  |-  ( ( a e. ~P A /\ ( b u. c ) e. ~P A ) -> ( a ( +g ` M ) ( b u. c ) ) = ( a u. ( b u. c ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b u. c ) ) = ( a u. ( b u. c ) ) ) | 
						
							| 25 | 18 24 | eqtrd |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b ( +g ` M ) c ) ) = ( a u. ( b u. c ) ) ) | 
						
							| 26 | 10 15 25 | 3eqtr4a |  |-  ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) | 
						
							| 27 | 26 | ex |  |-  ( ( a e. ~P A /\ b e. ~P A ) -> ( c e. ~P A -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) | 
						
							| 28 | 9 27 | biimtrid |  |-  ( ( a e. ~P A /\ b e. ~P A ) -> ( c e. ( Base ` M ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) | 
						
							| 29 | 28 | ralrimiv |  |-  ( ( a e. ~P A /\ b e. ~P A ) -> A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) | 
						
							| 30 | 8 29 | jca |  |-  ( ( a e. ~P A /\ b e. ~P A ) -> ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) | 
						
							| 31 | 3 4 30 | syl2anb |  |-  ( ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) | 
						
							| 32 | 31 | rgen2 |  |-  A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) | 
						
							| 33 |  | 0ex |  |-  (/) e. _V | 
						
							| 34 |  | eleq1 |  |-  ( e = (/) -> ( e e. ( Base ` M ) <-> (/) e. ( Base ` M ) ) ) | 
						
							| 35 |  | oveq1 |  |-  ( e = (/) -> ( e ( +g ` M ) a ) = ( (/) ( +g ` M ) a ) ) | 
						
							| 36 | 35 | eqeq1d |  |-  ( e = (/) -> ( ( e ( +g ` M ) a ) = a <-> ( (/) ( +g ` M ) a ) = a ) ) | 
						
							| 37 |  | oveq2 |  |-  ( e = (/) -> ( a ( +g ` M ) e ) = ( a ( +g ` M ) (/) ) ) | 
						
							| 38 | 37 | eqeq1d |  |-  ( e = (/) -> ( ( a ( +g ` M ) e ) = a <-> ( a ( +g ` M ) (/) ) = a ) ) | 
						
							| 39 | 36 38 | anbi12d |  |-  ( e = (/) -> ( ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) | 
						
							| 40 | 39 | ralbidv |  |-  ( e = (/) -> ( A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) | 
						
							| 41 | 34 40 | anbi12d |  |-  ( e = (/) -> ( ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) <-> ( (/) e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) ) | 
						
							| 42 |  | 0elpw |  |-  (/) e. ~P A | 
						
							| 43 | 42 1 | eleqtrri |  |-  (/) e. ( Base ` M ) | 
						
							| 44 | 1 2 | pwmndgplus |  |-  ( ( (/) e. ~P A /\ a e. ~P A ) -> ( (/) ( +g ` M ) a ) = ( (/) u. a ) ) | 
						
							| 45 |  | 0un |  |-  ( (/) u. a ) = a | 
						
							| 46 | 44 45 | eqtrdi |  |-  ( ( (/) e. ~P A /\ a e. ~P A ) -> ( (/) ( +g ` M ) a ) = a ) | 
						
							| 47 | 1 2 | pwmndgplus |  |-  ( ( a e. ~P A /\ (/) e. ~P A ) -> ( a ( +g ` M ) (/) ) = ( a u. (/) ) ) | 
						
							| 48 | 47 | ancoms |  |-  ( ( (/) e. ~P A /\ a e. ~P A ) -> ( a ( +g ` M ) (/) ) = ( a u. (/) ) ) | 
						
							| 49 |  | un0 |  |-  ( a u. (/) ) = a | 
						
							| 50 | 48 49 | eqtrdi |  |-  ( ( (/) e. ~P A /\ a e. ~P A ) -> ( a ( +g ` M ) (/) ) = a ) | 
						
							| 51 | 46 50 | jca |  |-  ( ( (/) e. ~P A /\ a e. ~P A ) -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) | 
						
							| 52 | 42 51 | mpan |  |-  ( a e. ~P A -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) | 
						
							| 53 | 3 52 | sylbi |  |-  ( a e. ( Base ` M ) -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) | 
						
							| 54 | 53 | rgen |  |-  A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) | 
						
							| 55 | 43 54 | pm3.2i |  |-  ( (/) e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) | 
						
							| 56 | 33 41 55 | ceqsexv2d |  |-  E. e ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) | 
						
							| 57 |  | df-rex |  |-  ( E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> E. e ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) ) | 
						
							| 58 | 56 57 | mpbir |  |-  E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) | 
						
							| 59 | 32 58 | pm3.2i |  |-  ( A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) /\ E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) | 
						
							| 60 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 61 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 62 | 60 61 | ismnd |  |-  ( M e. Mnd <-> ( A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) /\ E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) ) | 
						
							| 63 | 59 62 | mpbir |  |-  M e. Mnd |